

Celestial Clocks and Ripples in Spacetime

Dr. Michael T. Lam Ruckman Public Lecture – 21 Oct 2022

RIT College of Science Astrophysical Sciences and Technology

Multiwavelength Combination

X-ray: NASA/CXC/SAO; IR (Spitzer): NASA/JPL-Caltech; IR (Webb): NASA/ESA/CSA/STScI

A New Window to the Universe

Caltech/MIT/LIGO Lab

Multimessenger Combination

Electromagnetic

Gravitational

LIGO/Virgo Orrery, Teresita Ramirez/Geoffrey Lovelace/SXS Collaboration/LIGO-Virgo Collaboration

Gravitational Wave Spectrum

T. Carnahan (NASA GSFC)

NASA, ESA, and the Hubble Heritage Team (STScI/AURA)-ESA/Hubble Collaboration T. Carnahan (NASA GSFC)

Effects of Gravitational Waves

Effects of Gravitational Waves

Neutron Stars M ~ 1-2 M $_{\odot},$ R ~ 12 km

NASA, NICER, GSFC

L: Thankful Cromartie R: http://www.cv.nrao.edu/course/astr534/images/PSRs_discovery.jpg

https://www.noao.edu/image_gallery/images/d5/03036y.jpg

Measuring Pulses

On February 18, 2011 at 00:00:00 UTC: P = $2.947108024810317 \pm 0.000000000000009$ ms

On February 18, 2011 at 00:00:00 UTC: P = $2.947108024810317 \pm 0.000000000000009$ ms

The last digit changes by 1 every 71 seconds

On February 18, 2011 at 00:00:00 UTC: P = $2.947108024810317 \pm 0.0000000000000009$ ms

The last digit changes by 1 every 71 seconds

This digit changes by 1 every 226 years

On February 18, 2011 at 00:00:00 UTC: P = $2.947108024810317 \pm 0.0000000000000009$ ms

The last digit changes by 1 every 71 seconds

This digit changes by 1 every 226 years

From February 18, 2011 at 00:00:00 UTC to the start of this talk (October 22, 2022 at 00:30:00 UTC), the pulsar has completed just over 125,007,769,167 rotations (and a half!)

More fun with J1909-3744

- Smallest eccentricity of any known binary in the Universe:
- $\mathbf{e} = 0.000000110 \pm 0.00000009$
- The orbit has a radius=(5.7018±0.0004)·10⁸ m (0.82 R_{Sun})
- But, we know the difference between the semi-major and semi-minor axis is $3.5 \pm 0.5 \mu m!$

The Tiny Effects of GWs

L ~ cT ~ 10 light years (= 3 pc = 10^{17} m) h ~ $10^{-16} - 10^{-14}$ (for our sources) ∆L ~ hL ~ 10-1000 m → $\Delta t = \Delta L/c$ ~ hT ~30-3000 ns

http://astro.hopkinsschools.org/course_documents/stars/smallest/neutron_structure.jpg

Pulsar Timing

Residuals and GW Signatures

Residuals and GW Signatures

Courtesy: D. Nice, J. Cordes

Residuals and GW Signatures

NANOGrav

Courtesy: D. Nice, J. Cordes

The Pulsar Timing Array

Gravitational Wave Sources

Analyzing the Dataset

BF~10000 for Common Process, BF~2 for Hellings-Downs

Arzoumanian et al 2020

Gravitational Wave Spectrum

Gravitational Wave Spectrum

