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Motivation
Why do we care about what size Saturnian 
ring particles are?

s• Better models of Saturn ring 
dynamics.

• A better understanding of 
Saturn’s rings and their 
possible origin and evolution.

• Rings are our local debris 
disks (common objects in the 
Universe). 



The Rings of Saturn
C Ring B Ring

Cassini
Division

A Ring
(inner & outer)

• The Main Rings are made of solid pieces of 
water ice + trace impurities. 

• Rings exist because tides > self-gravity.

• The rings have distinct regions with different 
properties. 



Cassini
• Cassini entered orbit 

around Saturn in 2004.

• Constantly changing 
geometry as repeated 
close encounters with 
Titan alter the orbit.

• Able to achieve 
resolutions and 
geometries impossible 
from Earth



Visible-Infrared 
Mapping Spectrometer

• 256 infrared channels.

• Wavelength range from 0.9 to 
5.2 µm in occultation mode.

• Pixel size 0.5 x 0.5 milliradians 

• Boresight allows solar 
observations

• Capable of imaging pixel-by-
pixel. 
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Occultations

Source

Ring

Receiver

Some light makes it through the ring,
Some light is absorbed /reflected by ring particles.



Occultations

Source

Ring

Receiver

θ ~ λ/a
0.5 mrad @ 2 µm —> mm-sized ring particles 

Diffracted light would make an aureole around the 
source.  

Particles can also 
diffract light as well 
as absorb it.  This is 
size dependent.



Modeling the Particle-
Size Distribution
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Previous Knowledge: 
General

• There is little free ring 
material smaller than 
millimeter-sized ring 
particles.

• Not much is known 
about the exact lowest 
cutoff size. (amin)

• The size-distribution 
steepens markedly at 
~5-10 meters, acting 
like an upper cutoff 
(amax)

• The size distribution 
of the ring particles 
between centimeters 
and meters acts like a 
power law of q ~ 3.



Previous Knowledge:
Ring Regions
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Previous Knowledge:
Ring Regions

C Ring
B Ring

CD A Ring Earth-based
Stellar (28 Sgr) 
Occultation
(French & Nicholson, 
2000)

Cassini Radio
Occultations
(prelim results, 
Marouf et al., 2008)

Encke 
Gap
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Solar Occultations

• Details in Harbison et 
al., 2013, in Icarus

• Taken as 12 x 12 pixel 
images.

• 6 occultations had 
sufficient S/N.

Reverse-contrast
VIMS image of the Sun



Instrumental Effects
• This is an image of 

the Sun outside the 
rings.

• Instrument-scattered 
light is stronger than 
the halo from ring 
particle diffraction.

• How to measure it? Background is ~1/10 of 
peak solar signal



VIMS Imaging (Theory)

Wavelength

Time

Near IR (0.9 to 5.2 µm) 

• Light enters the solar port 
and is attenuated.

• A small mirror directs part 
of the field of view into 
the spectrometer.

• This creates a spectrum of 
one pixel.

• The mirror tilts to direct 
the next pixel’s light onto 
the spectrometer.



VIMS Imaging (Practice 
with Solar Port)

• Light enters the solar port and is 
attenuated and scattered.

• A small mirror directs part of the 
FOV into the spectrometer.

• Scattered light from the entire FOV 
also enters the spectrometer.

• The mirror tilts to direct the next 
pixel’s light onto the spectrometer.  
The scattered light entering the 
spectrometer does not change (as 
much). 



Measuring Diffraction

=

Ring Cube Mean of 
Empty Cubes

Sun’s image is 
dimmer

÷

(Simulated images)

Surrounding pixels 
are brighter.

BG large enough to 
work as reference.

T
Ts



Measuring Diffraction

T
Ts

• Transmission found by fitting 
Gaussian function to sun + 
background.

• Difference in transmission 
=> fraction of light diffracted 
to θ greater than 0.5 mrad 
=> measure of particle 
properties.



Results



The C Ring
Signal is an 
average over 

many cubes and 
binned in 

wavelength.
3 positive 

detections, 1 
partial positive, 1 

negative 
detection.
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Minimum Particle Size 
in the C Ring

amin=
1 m

amin=
10 cm

amin=
1 cm

amin=
1 mm

amin=
0.1 mm

q = 3.0q = 2.75 q = 3.25

q = 3.1
(Mean from prev. work)

Using q = 3.1,
this work finds

amin = 
4.1+3.8-1.3 mm



Comparison: C Ring

• 28 Sgr ~ 1 cm in C Ring (French & 
Nicholson, 2000)

• Cassini RSS = 4 mm in C Ring (Marouf, 
2008)

• This work = 4 mm in C Ring for q = 3.1



The A Ring

Signal is an average 
over many cubes 

and binned in 
wavelength.
5 positive 

detections, 1 
negative detection.
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Minimum Particle Size 
in the A Ring

amin=
1 cm

amin=
1 mm

amin=
0.1 mm q = 3.0q = 2.75 q = 3.25

2.75 < q < 2.9
Mean from prev.  work Using q = 2.9,

this work finds
amin = 

0.6+0.4-0.2 mm

Using q = 2.75,
this work finds

amin < 
0.3 mm



Comparison with 
Previous Results

• 28 Sgr = 30 cm in inner-to-mid A Ring 
(French & Nicholson, 2000)

• Cassini RSS = 20 cm in inner-to-mid A 
Ring (Marouf, 2008)

• This work = 0.6 mm (or less!) in inner-to-
mid A Ring

• However, previous work does not include 
self-gravity wakes.



Self-Gravity Wakes

• Seen seen in 
computational 
modeling of A Ring (in 
early 2000s). 

• Explains azimuthal 
asymmetries seen in the 
A Ring pictures & 
occultations. 

Figure from Salo et. al, 2004

To Saturn To Saturn



Figure from Salo et. al, 2004

Self-Gravity Wakes

Wakes are a balance between the ring’s self-gravity and 
tides from Saturn.

Wakes are aggregates of ring particles.  A wake is 
temporary, but the A ring always has self-gravity wakes



Figure from Salo et. al, 2004

Self-Gravity Wakes

• Wakes can violate a 
model assumption => 
that num. density 
comes from 𝜏. 

• However we know 
wake properties and can 
model them to get the 
correct num. density. 



Ignoring Self-Gravity 
Wakes

• Wakes mean fewer 
particles of all sizes are 
free to interact with light 
for a given 𝜏.

• A model with wakes 
would have less effect 
from (free) small 
particles than one 
without.

• But, in many cases no 
wakes and few small 
particles produce the 
same effect as wakes. 

• Unlike previous 
experiments, I am 
insensitive to larger 
particles, so my results 
cannot be explained 
without mm-sized 
particles. 



Conclusions: Particle 
Size Distribution

• We confirm minimum particle sizes of amin ~ 4 mm 
in the C Ring.

• The inner-to-mid A Ring has minimum particle 
sizes of amin < 1 mm, over two orders of magnitude 
less than previous results.

• Modeling the inner to mid A Ring must take the 
self-gravity wakes into account.


