The New Horizons Mission: Pluto and Beyond

Susan D. Benecchi Carnegie DTM & Planetary Science Institute 19 April 2013

Artifacts in the Solar System

- Planet X ~ Pluto: discovered before its time
- Charon
- Nix, Hydra, P4 and P5
- Our current understanding of the Pluto System
- Discovery of the Kuiper Belt
- What small bodies tell us about our Solar system
- The New Horizons Mission

Discovered in January-February 1930, by Clyde Tombaugh at Lowell Observatory, Arizona.

<1% Mars's Max Apparent Diameter (0.1 arcsec)
50,000 times fainter than Mars (V~14)

18 April 2013

Pluto

DISCOVERY OF THE PLANET PLUTO

January 23, 1930

January 29, 1930

The Pluto system is located at 30 AU (semimajor axis ~ 40 AU), and it has a 249-year orbit with $i = 17^{\circ}$ and e = 0.25. ^{18 April 2013} S. D. Benecchi

Heliocentric Orbit

Charon 1978

Discovery image of Charon, from a USNO photographic plate (James Christy).

http://www.solarviews.com/eng/pluto.htm 18 April 2013 Charon is ~ 17 R_{pl} from Pluto (~ 1"), and they are in synchronous rotation with a period of 6.4 days
 Charon's *V*-magnitude is 16.8, compared to Pluto's 15.1 (1/5 as bright)

S. D. Benecchi

P5

- Irregular in shape
- 6 to 15 miles across
- In a 58,000-milediameter circular orbit around
 Pluto, assumed to
 be co-planar with
 the other satellites
 in the system.

Size, Surface and Color

Pluto and Charon: Atmospheres

Pluto C313.2, Charon

Observers: J.L. Elliot and E.R. Adams, Movie: D. Osip *Not real time. Occultation of C313.2 by Charon as recorded by POETS mounted on the 6.5-m Clay telescope at Las Campanas Observatory.

18 April 2013

For movie see: http://occult.mit.edu/research/C313OccMovie.php

- Charon does not have a substantial atmosphere.
- Pluto has a Nitrogen atmosphere.
- S. D. Benecchi

From the Densities of Pluto and Charon, One Can Derive Crude Interior Models.

Perspective

1700s — Halley's Comet (short period comets)

1801 — 1st Asteroid, Ceres

1930 — Pluto discovered

1932/1950 — Opik & Oort theorize about Oort cloud (long period comet reservoir) 1949/1951 —

Edgeworth & Kuiper theorize about the Kuiper Belt

1992 — First Kuiper Belt Object discovered

2002 — First binary Kuiper Belt Object, 1998 WW₃₁

The First KBO: 1992QB1

Deep Ecliptic Survey Observations

Near Earth: ≥ 75 "/hr Main Belt: 30-40 "/hr Centaurs: 5-15 "/hr Kuiper Belt: ≤5 "/hr 18 April 2013

1999HD₁₂

2000CG₁₀₅

1999HB.,

MainBeltAsteroid

S. D. Benecchi

FastMovingObject(127arcsec/hr)

Millis et al. 2002

THE OUTER SOLAR SYSTEM

This animation shows the motion of the outer part of the solar system over a 100-year time period. The sun is at the center and the orbits of the planets Jupiter, Saturn Uranus and Neptune are shown in light blue (the locations of each planet are shown as large crossed circles).

Comets: blue squares (filled for numbered periodic comets, outline for other comets) High-e objects: cyan triangles Centaurs: orange triangles Plutinos: white circles (Pluto itself is the large white crossed circle) "Classical" TNOs: red circles Scattered Disk Objects: magenta circles

The individual frames were generated on the PGPLOT graphics library. The anir RISC OS 4.03 system using !InterGif.

~1600 Objects

Face-on

18 April 2013 S. D. Benecchi

Current KBO Population

Cold Classical Kuiper Belt

Centaurs (transition objects)

Resonance populations

Focus on End-Members

 \diamond Objects in dynamically

interesting locations

Large Kuiper Belt Objects

Binaries

♦ binary orbit -> system mass. $(m_p + m_s) = 4\pi^2 a^3/GP^2$ Kepler's 3rd law

 \diamond diameters assuming (or measuring) an albedo, *p*.

WATER ICE I

 $d = \frac{2r\Delta}{R\sqrt{p}} 10^{-0.2(m_{kbo} + \alpha\beta - m_{sun})}$

Binary Orbits

- + HST/WFPC2 and HST/ACS programs (also some Keck LGS AO)
- ✤ 4 observations per HST orbit, 5 or more orbits per object
- ✦ Filter: F606W ~ V, F814W ~ I
- + 18 + objects
- Analyzed data with standard HST pipeline and iterative PSF fitting of binary images with Tiny Tim models.

Science Motivation: Measure system mass for objects in the Kuiper Belt to learn about density/composition. Also to learn about scattering in the Kuiper Belt.

A Formation Scenario

S. D. Benecchi

18 April 2013

New Horizons: Launched January 19, 2006 Pluto System Arrival: July 2015

Some of the slides that follow are extracted from presentations made by New Horizons Scientists and can be found on the New Horizons website.

18 April 2013

S. D. Benecchi

Great Progress is Fundamentally Limited Until We Visit

This is <u>the</u> fundamental exploration lesson of planetary science.

Pluto at Best HST Resolution Triton at Best HST Resolution

Earth's Moon at the Same Resolution

S. D. Benecchi

NEW HORIZONS

The Initial Reconnaissance of The Solar System's "Third Zone"

KBOsPluto-CharonJupiter System2016-202014 July 201528 Feb 2007

Launch 9 Jan 2006

A Mission to Pluto Has Been Worked In the Science Community Since 1989

Toward New Horizons

The Highest Priority New Frontiers New Start Recommendation of the Planetary Decadal Survey

A Reconnaissance Expedition To the Kuiper Belt & Pluto-Charon

18 April 2013

S. D. Benecchi

Launch: 19 January 2006

Leaving Home

lew Horizons 102 . An+

20065-001-224 2007-01-1

Project Philosophy

Offer early and highly-leveraged science. Do so on time, within budget, and at low risk. Provide Intensive Public Outreach Keep It Simple

18 April 2013

Launch Vehicle: Atlas V 551 With A STAR-48 Upper Stage

NASA-Specified Pluto-Charon Measurement Objectives

Group 1 Objectives: Required

Characterize the global geology and morphology of Pluto and Charon

Map surface composition of Pluto and Charon

Characterize the neutral atmosphere of Pluto and its escape rate

Group 2 Objectives: Important

Characterize the time variability of Pluto's surface and atmosphere

Image Pluto and Charon in stereo

Map the terminators of Pluto and Charon with high resolution

Map the composition of selected areas of Pluto & Charon at high resolution

Characterize Pluto's ionosphere and solar wind interaction

Search for neutral species including H, H₂, HCN, and C_xH_y, and other hydrocarbons and nitriles in Pluto's upper atmosphere

Search for an atmosphere around Charon

Determine bolometric Bond albedos for Pluto and Charon

Map the surface temperatures of Pluto and Charon

Group 3 Objectives: Desired

Characterize the energetic particle environment of Pluto and Charon

Refine bulk parameters (radii, masses, densities) and orbits of Pluto & Charon

Search for magnetic fields of Pluto and Charon

Search for additional satellites and rings

18 April 2013

New Horizons Spacecraft

Student Dust Counter: <u>A New Kind of EPO</u>

<u>EPO Goal:</u> Give students a chance to design, build, operate, & study data from a planetary flight experiment.

□ <u>Science Goal:</u> Make the first dust density & size spectrum observations beyond 18 AU.

□ <u>Students have the primary</u> <u>responsibility</u> for the design and development of the SDC; over 35 "first Generation" students presently involved at CU, Dozens more across the U.S.

□ <u>Science Col:</u> Mihaly Horanyi.

□ Four-to-Five Generations of Students To Be Directly Involved.

SDC Student Team Leaders

Jupiter Flyby Priorities

C/A Date28 Feb 2007Range38 R
Jupiter

- Gravity Assist (Speed Trajectory to Pluto)
- Encounter Ops Practice, Instrument Calibrations
- Jupiter System Science: include studies of Jovian meteorology, satellite geology and composition, auroral phenomena, and magnetospheric physics 18 April 2013

Jupiter Science: Working as Planned

Jupiter's Moon Io Tvashtar's Plume February 28, 2007

18 April 2013

New Horizons in Flight LORRI High Resolution Imager

Targeting Kuiper Belt Objects

- Ground-based campaign to locate candidate KBOs along the spacecraft nominal trajectory up to 55 AU from Sun.
- **On-board** ΔV is capable of reaching multiple KBOs with size > 40 km.
- **Execute a TCM at P+14d to alter trajectory towards first KBO.**

- Obtain OpNav image of targeted KBO as early as 3-5 weeks out.
- Refine KBO encounter accuracy with a trim TCM incorporating OpNav data.
- KBO flyby velocities of 8 km/s to 14 km/s.
 18 April 2013
 S. D. Benecchi

MVIC and LORRI Resolution

 This Europa image is at 300 m/pixel resolution, the same resolution as the New Horizons images taken with the PERSI/MVIC panchromatic imager at Pluto closest approach.

5 km

18 April 2013

The Europa inset image is at 50 m/pixel resolution, the same resolution as the New Horizons high-resolution strips taken with the LORRI imager at Pluto closest approach.

18 April 2013

Final Stop: The Kuiper Belt

Images from the 4-m telescope at Cerro Tololo Int. Observatory

Search Area

- Search area shrinks with time as it converges on the spacecraft trajectory
 - Defined by KBO velocity dispersion, not available delta-V

Telescopes Used for Our Search

The Magellan Telescopes Las Campanas Observatory, Chile

Subaru Telescope Mauna Kea, Hawaii

18 April 2013

KBO Search

18 April 2013

Discoveries

Name	DB-ID	a (AU)	e	i (deg)	Mag	Date of CE	Range at CE (AU)	$\Delta v (m/s)$	Obs Arc (days)
2011HM102	VNH0001	30.1	0.081	29.4	22.2	2013/11/02 - 2013/11/02	1.22 - 1.22	pre-Pluto	355
VNH0002	VNH0002	51.0	0.223	6.4	—	2018/03/31 — 2019/06/14	0.21 - 0.44	360 - 560	66
VNH0003	VNH0003	50.4	0.345	5.4	—	2017/01/15 - 2017/11/01	0.18 - 0.40	520 - 850	66
VNH0004	VNH0004	39.0	0.355	3.8	23.5	2014/10/08 — 2016/03/01	0.34 - 1.14	>5000	34
VNH0005	VNH0005	51.5	0.455	3.1	24.5	2017/04/25 — 2018/03/11	0.48 - 0.94	880 — 2200	65
VNH0006	VNH0006	50.8	0.016	2.5	26.0	2021/02/13 - 2022/03/30	0.17 - 1.13	140 - 810	4
2011JW31	VNH0007	46.0	0.142	1.9	25.2	2018/05/30 - 2018/12/26	0.14 - 0.21	230 - 290	358
2011JY31	VNH0008	44.0	0.041	2.6	25.0	2018/07/19 - 2018/10/27	0.14 - 0.16	220 - 240	358
2011JX31	VNH0009	44.9	0.107	3.3	24.5	2020/06/18 — 2020/06/28	0.41 - 0.42	390 - 400	448
2011HZ102	VNH0010	43.2	0.004	2.4	25.4	2018/09/07 — 2019/01/15	0.15 - 0.20	210 - 280	358
VNH0011	VNH0011	42.3	0.161	14.5	23.2	2016/03/11 - 2016/09/07	1.33 - 1.44	>5000	66
2011HE103	VNH0012	43.7	0.083	6.8	_	2019/08/13 — 2021/04/24	0.90 - 0.96	850 - 1000	358
VNH0013	VNH0013	56.9	0.467	13.0	24.0	2015/05/16 - 2016/03/21	0.93 - 1.14	>5000	64
2011JA32	VNH0014	62.6	0.536	3.2	25.8	2017/06/24 — 2018/08/28	0.35 - 0.42	690 - 870	356
VNH0015	VNH0015	34.8	0.034	18.8	25.4	2012/06/30 - 2017/01/15	0.55 - 2.59	>5000	6
2011HD103	VNH0016	53.1	0.490	5.8	25.3	2020/08/07 — 2024/08/06	1.35 - 1.37	720 - 1270	359
VNH0019	VNH0019	46.4	0.021	2.7	24.7	2016/12/06 — 2024/12/14	0.38 - 1.96	420 - 1420	3
VNH0020	VNH0020	54.0	0.020	18.1	—	2017/12/31 - 2024/07/27	1.20 - 4.32	>1000	2
VNH0021	VNH0021	44.2	0.085	3.3	-	2014/07/30 — 2019/03/26	0.07 - 0.45	>1000	3
VNH0022	VNH0022	44.5	0.044	6.2	—	2016/03/21 — 2020/07/08	0.38 - 0.98	860 — 1180	3
VNH0023	VNH0023	38.8	0.011	19.3	_	2015/08/04 — 2019/12/21	1.28 - 2.58	>1000	3
VNH0024	VNH0024	41.8	0.155	4.5	—	2015/05/06 - 2017/05/25	0.18 - 0.48	>1000	3
VNH0025	VNH0025	46.5	0.021	2.9	—	2019/08/03 — 2019/11/01	0.96 - 1.18	>1000	2
VNH0026	VNH0026	45.4	0.022	9.1	—	2018/06/19 — 2019/06/24	1.02 - 2.17	>1000	1
VNH0027	VNH0027	44.3	0.023	3.0	—	2018/01/10 — 2019/08/03	0.73 - 1.82	900 — 2440	1
VNH0029	VNH0029	67.1	0.022	2.8	—	2025/03/04 - 2029/12/18	0.19 - 5.36	80 - 1840	6
VNH0031	VNH0031	23.8	0.199	6.6	_	2012/08/09 — 2018/01/30	0.39 - 2.33	>5000	6

18 April 2013

- Color information
- Is the object binary?

18 April 2013

Thanks for listening... Questions?

For more information (including technical papers), see http://pluto.jhuapl.edu

Thanks for listening Questions?