Hydrostatic Equilibrium Worksheet

1) The pressure P at various depths h of a fluid in a graduated cylinder is described by $P = P_0 + \rho gh$ where g is the acceleration of gravity. Thus the differential pressure, the amount of pressure above atmospheric pressure P_0 due to the fluid, is described by $P - P_0 = \rho gh$. Indicate which labeled curve or line correctly describes the differential pressure how the differential pressure $P-P_0$ increases with depth h for a graduated cylinder filled with ...

Indicate which labeled curve or line correctly describes the differential pressure how the differential pressure $P-P_0$ increases with depth h for a graduated cylinder filled with ...

C pure water on Earth

pure saltwater ($\rho{\text{saltwater}} = 1.3$) on Earth

_ pure water on a planet with lower gravity

_ water/karo syrup gradient on Earth

2) Two tall graduated cylinders are shown below. The cylinder on the left contains pure water $\rho_{\text{water}} = 1.0$ g/cm3. The cylinder on the right is nearly half full of Karo syrup $\rho_{\text{karo}} = 1.33$ g/cm3, water is added, and then the two are partially mixed creating a density gradient from top to bottom.

a) For the cylinder on the left, the pressure is P_a at the depth indicated.
 -- Indicate with a labeled arrow where the pressure $2P_a$?
 -- Indicate with an arrow where the density ρ is 1.25 g/cm3.

b) For the cylinder on the right, the pressure is P_B at the depth indicated.
 -- Indicate with a labeled arrow where the pressure $2P_B$?
 -- Indicate with an arrow where the density ρ is 1.25 g/cm3.