﻿ Impact Simulator
Meteor Density
ρM = kg/m3
Meteor Radii
RM = m
Mass of Meteor \begin{aligned} M_m & = \left(\frac{4}{3} {\pi R_M}{\ ^3} \right) \rho_M \\ & = \frac{4}{3} \pi \left( \class {mdv_field mdv_radius}{1.23}\ m \right) {^ 3} {\left( \class {mdv_field mdv_density} {1.02} \frac {kg}{m^3} \right )} \\ & = \class {mdv_field_result mdv_mass_of_meteor} {0} \ {kg} \end{aligned}
Planetary Settings
 H: m ρA: kg/m3
Mass of Column of Air \begin{aligned} M_{AC} & = {\left ( \pi R_M {\ ^2} \right ) H \rho_A} \\ & = \pi {\left ( \class {mdv_field mdv_radius}{1.23}\ m \right )} {^ 2} (\class {mdv_field_important mdv_field_settings mdv_scale_height} {8000}\ m) \left (\class {mdv_field_important mdv_field_settings mdv_rho_a} {1.29} \frac {kg} {m^3} \right) \\ & = \class {mdv_field_result mdv_mass_of_air_column} {0} \ {kg} \end{aligned}
Ratio of Masses \begin{aligned} \frac {M_{AC}}{M_m} & = \frac { (\pi R {^ 2 }) H \rho_A } { \left ( \frac {4}{3} \pi R{^ 3} \right) \rho_M } & & = \frac {3 H \rho_A} {4 R \rho_M} \\ & = \frac { 3 (\class {mdv_field_important mdv_field_settings mdv_scale_height} {8000}\ m) \left( \class {mdv_field_important mdv_field_settings mdv_rho_a} {1.29} \frac {kg} {m^3} \right) } { 4 (\class {mdv_field mdv_radius} {1.23} \ m)\ (\class {mdv_field mdv_density} {1.02} \frac {kg} {m^3})} \\ & = \class {mdv_field_result mdv_ratio} {1} \end{aligned}